Non-degenerate Hypersurfaces of a Semi-riemannian Manifold with a Semi-symmetric Metric Connection

نویسندگان

  • Ahmet Yücesan
  • Nihat Ayyildiz
چکیده

We derive the equations of Gauss and Weingarten for a non-degenerate hypersurface of a semi-Riemannian manifold admitting a semi-symmetric metric connection, and give some corollaries of these equations. In addition, we obtain the equations of Gauss curvature and Codazzi-Mainardi for this non-degenerate hypersurface and give a relation between the Ricci and the scalar curvatures of a semi-Riemannian manifold and of its a non-degenerate hypersurface with respect to a semi-symmetric metric connection. Eventually, we establish conformal equations of Gauss curvature and Codazzi-Mainardi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some vector fields on a riemannian manifold with semi-symmetric metric connection

In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

On some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection

We study submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection is also a semi-symmetric non-metric connection. We consider the total geodesicness, total umbilicity and the minimality of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection. We have obtained the Gauss, Codazzi and Ricci equations wit...

متن کامل

On Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection

In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection on a submanifold is also semi-symmetric non-metric connection. We consider the total geodesicness and minimality of a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss, Cadazzi, and Ricci equations for submanifold...

متن کامل

Ascreen Lightlike Hypersurfaces of a Semi-riemannian Space Form with a Semi-symmetric Non-metric Connection

We study lightlike hypersurfaces of a semi-Riemannian space form M̃(c) admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of M̃(c), which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008